
Introduction

Scientists and environmental managers alike are con-
cerned about broad-scale changes in land use and landscape
patterns and their cumulative impacts on hydrological and
ecological process that affect stream, wetland and estuary
conditions [1]. Over the past few decades much attention
has been paid to evaluation of the relative condition of
water resources on regional and national scales by
researchers [e.g. 2-4] through examining the possible rela-
tionship between land use types and different stream water
quality variables. 

Introducing analytical tools such as the geographical
information system and multivariate statistics have enabled
researchers to deal with spatial data and complex interac-
tions in the environment [2]. Applying a multiple regression
approach for specifying the relationship between land use
and a given water quality variable provide not only infor-
mation regarding the importance of spatial positioning of
land cover, but also would be helpful in determining the rel-
ative importance of different land use types as nutrient con-
tributors [5]. 

Statistical methods might be adequate to find an overall
pattern of ecological systems but the non-linear behavior of
ecosystems could not be efficiently reviewed by conven-
tional linear methods. Most algorithms in machine learning,
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Abstract

Performance of two data-driven models that were developed using Artificial Neural Networks (ANNs)

and Multiple Linear Regression (MLR) approaches were investigated in prediction of Total Nitrogen (TN)

concentration in twenty-one river basins in Chugoku district of Japan. Comparison of TN concentration pre-

dictions, which were carried out using an ANN-based model and MLR-based model indicated that prediction

of the former model (r2=0.94, p<0.01) was more accurate than that of the latter model (r2=0.85, p<0.01). Lack
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dealt with using a Monte Carlo-based sensitivity analysis of the developed models. This initiative could pro-

vide reliable information for judging predictive capacity of the developed models stochastically. Result of sen-

sitivity analysis revealed that predictive capacity of the ANN-based model varied between 0-2 mg/L.

Moreover, prediction of the negative outputs was not observed. using the ANN-based model for TN concen-

tration in stream water.
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such as Artificial Neural Networks (ANNs), contain the
models to deal with non-linear data based on adaptive or
heuristic methods [6]. Artificial neural networks have
become a popular and useful tool for modeling environ-
mental systems [7] because of the ability of ANNs to find
non-linear patterns in data [8]. 

Validating the models, which are developed based on
either ANNs or MLR modeling approaches, might be con-
sidered a critical step in modeling. This task is conducted
using two distinctive methods, namely residual-based vali-
dation and cross-validation. The first is the prevailing
approach, which is applied for validating MLR-based mod-
els. The former has been widely considered by researchers
involved in ANNs modeling. The modeling process might
be halted for the application of cross-validation if the mod-
eler has no access to sufficient data in number in order to
allocate part of a data set for cross-validating the model.
The objectives of this study were: 
1) to predict streamwater total nitrogen as one of the

important nutrients from land cover attributes (area %
of different land covers such as urban, forest, agricul-
ture, grassland and water body in the catchments) using
ANNs and MLR approaches,

2) to compare performance of the developed ANNs-based
model to that of the MLR modeling approach, and 

3) to investigate the application of Monte Carlo Method
for dealing with the scarcity of data set for cross valida-
tion of the developed models.

Materials and Methods

Study Site

The present study was carried out in the Chugoku dis-
trict of Japan, on western Honshu island at (130º55'16'' and
133º12'11'') longitude and (33º57'40'' and 35º23'34'') lati-
tude. It includes five prefectures (Hiroshima, Yamaguchi,
Tottori, Shimane and Okayama), and covers 32,000 km2

(Fig. 1). A spatial analysis of land cover map indicates that
a high percentage (79.34%) of the study area is covered by
forest. Other land cover classes, including urban, agricul-
ture, grassland and water, make up 5.15, 8.33, 6.63 and
0.46% of the study area, respectively (Table 1). There are
7,732,499 inhabitants in the study area (Japanese Statistic
Bureau of Ministry of Internal Affairs and Communication:
http://www.stat.go.jp/data/kokusei/ 2000/final/zuhyou/008-
01.xls) [9]. There are 54 major rivers in the Chugoku dis-
trict, 21 of which were selected for this study based on the
availability of satellite images and water quality data of the
rivers (Fig. 1).

Materials

Data Sets

Annual mean of TN data in 2001 were used based on
monthly values of TN concentration. Table 2 indicated
median, maximum and minimum values of TN concentra-
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Fig. 1. Geographical situation of the study area.



tion for 21 river basins in the study area. TN data were
obtained from the five prefecture offices (Hiroshima,
Yamaguchi, Shimane, Tottori and Okayama) in the study
area that could be defined as a secondary database [2].
Water sampling of the stream and analysis are carried out
monthly according to the Japanese Industrial Standard (TN:
JIS K0102 45.2, 45.3 [10]. Details of sampling method and
analysis procedures would be found in JSA JIS K 0102
[10]. Population data was obtained from the census in 2000
(http://www.stat.go.jp/data/kokusei/2000/final/zuhyou/
008-02.xls) [9]. Topographical quadrangle maps
(1:200,000) were obtained from the Japan Geographical
Survey Institute (JGSI) and applied to delineate the catch-
ments (Fig. 1). Satellite images (NASA Landsat-5 TM,
2000) were used to generate a land cover map.

Methods

GIS and Remote Sensing Analyses

Geographical Information System was established
using ArcView 3.2 [11] for facilitating spatial analysis and
determination of morphological attributes. Catchment
boundaries were hand-digitized using JGSI topographic
quadrangle maps (1:200,000) for all water-sampling sta-
tions illustrated in Fig. 1. A county-scale population data-
base was linked with the digital map of counties for gen-
erating a human population density map. It was then over-
laid by the catchments map and aggregated in order to
find the catchment-scale population density map in the
study area. All databases were transformed into a common
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Basin
Number

River
Name

Area

(km2)

Land uses (%) Population
density

(Person/km2)Urban Forest Agriculture Grassland Water body

1 Awano 182 1.97 86.61 5.62 5.89 0.28 63

2 Kakefuchi 85 4.36 71.94 16.35 5.42 1.04 106

3 Fuka 72 6.39 84.17 5.01 4.27 0.10 150

4 Misumi 67 1.36 88.41 5.05 4.18 0.00 70

5 Hamada 253 8.48 78.59 3.72 6.87 1.01 176

6 Gonoo 2622 1.79 83.89 7.44 6.61 0.27 72

7 Shizuma 174 2.46 84.23 5.39 10.05 0.22 150

8 Kando 495 7.09 78.16 11.84 2.76 0.14 222

9 Numata 627 4.42 65.6 24.74 5.04 0.21 165

10 Kamo 98 3.79 78.92 7.62 9.63 0.00 211

11 Kurose 282 10.8 57.61 20.64 10.1 0.75 819

12 Ota 1700 4.74 85.22 4.29 4.71 0.29 386

13 Oze 354 3.01 86.91 3.31 6.15 0.56 183

14 Nishki 932 1.04 91.76 2.76 3.72 0.71 165

15 Shimada 284 5.91 77.75 8.14 7.72 0.43 267

16 Saba 572 2.62 88.35 2.89 5.61 0.53 225

17 Washino 300 13.99 72.84 6.96 5.89 0.30 434

18 Kotou 416 3.8 75.64 8.83 10.91 0.79 253

19 Ariho 98 9.23 72.76 9.24 8.34 0.44 477

20 Asa 226 6.24 78.09 7.14 7.94 0.52 109

21 Koya 299 4.67 78.67 7.97 7.46 1.07 362

Max. 2622 13.99 91.76 24.74 10.91 1.07 819.00

Min. 67 1.04 57.61 2.76 2.76 0.00 63.00

Mean 482.76 5.15 79.34 8.33 6.63 0.46 241.19

Table 1. Physical features, land cover and population density in catchments of the Chugoku district.



digital format, projected onto a common coordinate system
(UTM, zones 52 and 53).

Two scenes of NASA Landsat-5 TM (2000) were used
for generating a land cover map in the study area. The
satellite images were geo-referenced by the affine proce-
dure. The supervised classification method was applied to
classify land use, which included forest, agriculture, grass-
land, urban and water body (including natural wetlands and
artificial lakes). The generated land cover map was verified
using JGSI maps. The satellite data was prepared, interpret-
ed and analyzed using the Integrated Land and Water
Information System [12]. For calculating the real extent of
each land cover for each catchment the generated land
cover map was then superimposed with a catchments map,
which was subsequently divided by the catchments area to
drive the percentage of the catchments covered by each
type.

MLR Modeling Approach

All TN and land cover data were tested for normality
using the Sharpio-Wilk test with a p-value of less than 0.05
(Table 3). For determination of linkage between land cover-
stream water TN concentrations, the MLR (linear, logarith-
mic, exponential and power) modeling approach was applied
using a backward method in order to achieve the best fit
model for TN variable. Inter-variable collinearity of the
model was investigated referring to the Variance Inflation
Factor (VIF). Normality of residuals of the models were then
examined using Sharpio-Wilk test with a p-value<0.05
(Table 4). For TN variable, the appropriate model was select-
ed based on regression statistics (r2, p-value) and considering
the significance of the coefficients of the model if the resid-
ual of the model was normally distributed. Finally, the good-
ness-of-fit of the statistically significant regression models
was evaluated by scatter plot, and simple linear regression of
observed versus equivalent model prediction [4]. Statistical
analyses were performed using Excel add-ons (XLSTATTM

2006), SPSS for Windows Release10 and EasyFit 3.2. 

ANNs Modeling Approach

For determination of linkage between stream water TN
concentration and land cover attributes, artificial neural net-
work modeling was applied. Generally, a neural network
consists of a number of elements, so called “nodes,” and
connection pathways linking them (Fig. 2) [13]. A network
with back-propagation of error typically, at least, compris-
es three layers: input, hidden and output [14]. The input
layer is first since the input data are applied there. In this
study it includes six neurons relating to the five land cover
variables and one neuron for human population density
variable. The output layer is the last one since it is where the
outputs are not only processed but also extracted there. In
the case of this study, the output layer constitutes a single
neuron relating to the value of dependent variable to be pre-
dicted (water quality variables). The hidden layers are those
that are placed between the input and output. Based on Lek
et al. [13] determination of a “state” or “activity level” for
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Catchment
No.

TN (mg/L)

Median Min Max

1 0.52 0.31 0.58

2 0.66 0.49 0.82

3 0.61 0.53 0.71

4 0.74 0.59 0.93

5 0.32 0.23 0.98

6 0.62 0.37 0.90

7 0.70 0.45 0.83

8 0.47 0.39 0.57

9 0.87 0.71 1.10

10 0.46 0.15 1.10

11 1.85 1.30 2.90

12 0.69 0.46 1.00

13 0.70 0.50 0.89

14 0.47 0.41 0.64

15 0.73 0.56 0.88

16 0.50 0.40 0.77

17 1.62 1.03 3.06

18 0.76 0.54 0.94

19 1.24 0.78 5.55

20 0.74 0.56 0.89

21 0.71 0.50 1.00

Table 2. Descriptive statistics of the annual median of TN in
stream water of the study area.

Variable
Sharpio-Wilk statistics

Statistic Sig.

TN 0.655 0.01

Population density 0.918 0.336

Urban 0.893 0.167

Forest 0.915 0.313

Agriculture 0.873 0.079

Grassland 0.939 0.475

Water body 0.961 0.746

Table 3. Results of normality test for TN and compositional
attribute of land covers.

*All bold values are significant at p <0.05.



each neuron is specified by the input received from prece-
dent units in the network. Generally, in the hidden layer, the
net input-to-unit j is of the form as follows:

(1)

...where xi is the output from unit i, (vj1, vj2, . . ., vjn) is the
weight vector of unit j and n is the number of neurons in the
layer preceding the layer including unit j. For the output
layer, the net input to unit k is of the form as follows:

(2)

...where yj is the output from unit j, (wk1, wka , . . ., wkh) is the
weight vector of unit k and h is the number of neurons in
the layer preceding the layer, including unit k. The most
common transfer function is the sigmoidal as follows:

(3)

Before training, weights vji were initialized with random
values in the range [0, 1]. Training the network to produce
a desired output vector involves systematically changing
the weights until the network produces the desired output.
This is repeated over the entire training set. The learning
process in the network would go on until the error at itera-
tion t+1 becomes higher than the error at iteration t or the
iteration target is achieved as given in Eqs 4 and 5 for out-
put layer and hidden layer:

Moreover, change in error value is another criterion to
stop the training of the network, which is applied by the
application. If change in error value becomes less than 10-9,
the training process will be stopped. Computation of the
weights and prediction of TN concentrations were per-
formed by Backpropagation Neural Network 1.0 developed
by Rudiyanto and Setiawan [15]. 

Based on the early stopping idea [16], a data set should
be classified into three groups called training (60%), con-
trolling (25%) and testing (15%) data sub-sets. The first
subset is used to estimate the parameters. The second sub-
set is called the validation set. The third subset, which acts
as the error on the validation set, monitors the estimation
process. When the network begins to overfit the data, the
error on the validation set typically begins to rise. When the
validation error increases for a specified number of itera-
tions, the estimation process is discontinued, and the para-
meters estimated at the minimum of the validation error
serve as final estimates [16].

Considering the number of rivers for which water qual-
ity data were available (21 basins), it seems that the number
of rivers that should be kept for testing the trained network
would be very few (three basins). Subsequently, reliable
information could not be provided for judging on the
trained network. Therefore, testing the trained networks
gave up using testing data that was real but few in numbers.
They were added to the controlling data set. Finally, twen-
ty-one catchments were classified into two sets in propor-
tion to 60% and 40% as training (12 river basins) and con-
trolling (9 river basins) data, respectively. For addressing
the shortage of the testing data, it was decided to use the
Monte Carlo Method for sensitivity analysis of the trained
network. 

According to the Monte Carlo Method, 5000 random
numbers were generated using the random number genera-
tor command in Microsoft Excel for six variables consist-
ing of area (%) of urban, forest, agriculture, grassland and
water body, and human population density. The trained net-
work was tested using the generated random number data
set based on the Monte Carlo procedure. In generating ran-
dom numbers, three conditions were considered: 
1) random numbers should vary between 0-100, 
2) the summation of five variables for land use types to be

equal to 100%, and 
3) random numbers for each variable should follow a

known distribution. 
Initially, six variables were defined in Microsoft Excel.

5,000 random numbers were generated for each variable
using the related command (randbetween (bottom) (top)) in
it for meeting the first condition. Each row stands for a
hypothetical river basin that consisted of five variables for
land use types (urban, forest, agriculture, grassland and
water body areas in percent) and the last variable for human
population density. For meeting the second condition, the
summation of five land use variables was calculated and
each land use variable divided by the summation since in a
real situation for a given river basin, land use types as land
use variables cannot be independent and any change in one
land use type should be at the expense of others.

For carrying out the modeling task of this study,
Backpropagation Neural Network 1.0 [15] stopped the
training process if the global optimum using controlling
data set and measures for learning rate (0.1), moment (0.1)
and gain (0.9) were met. This feature will avoid over-train-
ing phenomena while training the network, since the over-
training is accounted as a potential limitation on the use of
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Fig. 2. General pattern of artificial neural network.
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ANNs. It occurs when the capacity of the ANNs for train-
ing is too much because it is allowed too many training
cycles. It degrades the prediction performance of ANNs
significantly [17]. 

Although Maeir and Dandy [7] suggested a trial and
error approach for determining the optimum number of
nodes in the hidden layer, Hecht-Nielsen [18] proposed a
general guideline for specifying upper limits for the number
of nodes in the hidden layer as follows:

(6)

...where NH is the number of nodes in the hidden layer and
NI is the number of input nodes.

For this study, a combination of trial and error approach
and the general guideline which was proposed by Hecht-
Nielsen [18] were used. Firstly, the upper limit of number
of nodes in the hidden layer was calculated. In this study, it
would be equal to 13 nodes. The optimum number of the
nodes in the hidden layer was then determined using trial
and error so that for a specific number of nodes training the
network was repeated five times. Secondly, mean of corre-
lation coefficient value between observed and predicted
values for five trials were calculated. Finally, that number
of nodes whose mean of the correlation coefficient was
highest was selected as the optimum number of nodes in the
hidden layer. Fig. 3 indicated that mean correlation coeffi-
cient between observed and predicted values reached to its
maximum value for two nodes in the hidden layer and then
it revealed a steady-state for other tials.

The training task of the network was then carried out
using the optimum number of nodes in the hidden layer.
The result of training was evaluated using a scatter plot,
simple linear regression of observed versus equivalent
model prediction and determination of the Pearson's co-
efficient of regression (r2) [4]. 

Results and Discussion

Multiple Regression Models

The backward approach was applied to determine a final
regression model representing the linkage between land
cover and stream water TN concentration. For TN regres-
sion model, the initial fixed variables were area (%) of land
cover variables (urban, forest, agriculture, grassland and
water body), TN and human population density. The results
of the MLR-based modeling are summarized in Table 4.

12 IH NN  
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Fig.  3. Correlation coefficient value between the observed and
predicted values for five time trials for TN with different node
numbers in the hidden layer.

Fig. 4. The observed versus predicted values from which was
generated by MLR-based (a) and ANNs-based (b) TN models.

Regression
model

Variable Standard
Coefficient

Statistics Sharpio-Wilk test  

Dependent Independent S.E. r2 p VIF* Statistics Sig.

MLR TN Constant 1.075 0.85 0.001 0.928 0.400

Human population density 0.002 0.001 1.437

Forest -0.029 0.012 1.591

Water Body -0.637 0.210 1.143

Table 4. Results of MLR-based TN model.

*VIF= Variance Inflation Factor

a

b



In the TN regression model (r2= 0.85, p<0.01), 85% of
total variations in TN concentration would be explained by
change in human population density (%), area (%) of forest
and that of water body in the river basin. TN concentration
would be decreased by an increase in area (%) of forest and
water body. It would mean that these land use types could
play as a sink role and trap different forms of nitrogen
before entering into the river system. This is while a posi-
tive significant relationship was observed between TN con-
centration in the stream and human population density (%)
in the river basin.

Inter-variable collinearity of the MLR-based model was
investigated by referring to VIF (Table 4). While a VIF>10
could be considered as severe collinearity within variables
in the model [19, 20], the model has revealed no collinear-
ity (VIF<2). Normality of residuals of the model was test-
ed using the Sharpio-Wilk test with a p<0.05 whether it fol-
lows a normal distribution (Table 4). The results of the test
have suggested the residuals of all models were normally
distributed at significance level of p<0.05. A one-by-one
relationship between observed versus predicted values for
the MLR-based model was illustrated in Fig. 4a.

Training the ANNs Models

The back-propagation algorithm [21] was applied for
training the network. Input variables consisted of the area
(%) of urban, forest, agricultural, grassland, water body and
human population density, and the output of ANNs model
was stream water TN concentration. Network architecture
of the models includes six nodes (five nodes for land cover
type and one for human population density), the optimum
number of nodes in the hidden layer; and one output node
for TN variable. The appropriate number of the hidden
layer node was evaluated referring the correlation coeffi-
cient value between the observed and predicted values for
five time trials for each node that varied between 0 to 13
(Fig. 3). 

Table 5 indicated the results of network training for TN
concentration. Formula for TN concentration would be
generalized based on Fig. 2 as:

(7) 

...where;
Zk output value from output layer of node of zth, 
Ik is the input value for activation function at output layer

of node of kth,
Wkj is weight value from hidden layer of node jth to output

layer of node kth, 
Yj is output value from hidden layer node of jth, 
Hj is the input value for activation function at hidden layer

of node of jth; 
vji is weight from input layer of node ith to hidden layer of

node jth, and 
xi is value of input x of node ith (input layer).

Residual-based validation of the ANNs model was eval-
uated by plotting the predicted versus observed values and
calculating r2 and the Root Mean Square Error (RMSE).
Fig. 4b illustrates the one-by-one relationship between
observed versus predicted values by the ANNs model.
Table 5 and Fig. 4b indicate RMSE and r2 for TN. The
ANNs modeling approach could achieve a measure of
0.0025, 0.94 for RMSE and r2 after 11,600 iterations using
the 6-2-1 architectural pattern for it. Its architectural pattern
stands for 6 input nodes, 2 hidden layer nodes and 1 output
node.

Sensitivity Analysis of ANNs 
and MLR Models

Cross-validation [22] of the ANNs and MLR-based mod-
els were not carried out using real data because of limited
access to TN concentration data in the study area. Instead,
the Monte Carlo Method was considered for analyzing sen-
sitivity of ANNs and MLR-based models that were devel-
oped in this study. Table 6 summarized statistics of the data
set that was used for analyzing sensitivity of the ANNs and
MLR-based models. Based on the Monte Carlo Method for
sensitivity analysis of the ANNs and MLR based models,
5,000 random data sets were generated so that each set con-
sisted of five variables representing area (%) of urban, for-
est, agricultural, grassland and water body in hypothetical
river basins and human population density for each. 

j i
ijikj

j
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Table 5. Result of training the network for TN concentration
variable.

Symbol
From To

TN
Layer Node Layer Node

Vji 1 1 2 1 -1.3970

Vji 1 2 2 1 3.0753 

Vji 1 3 2 1 0.8101 

Vji 1 4 2 1 0.4920 

Vji 1 5 2 1 1.4827 

Vji 1 6 2 1 -1.4872

Vji 1 1 2 2 0.9171 

Vji 1 2 2 2 1.0774 

Vji 1 3 2 2 0.3969 

Vji 1 4 2 2 0.4689 

Vji 1 5 2 2 0.6301 

Vji 1 6 2 2 1.0117 

Wkj 2 1 3 1 -3.1508

Wkj 2 2 3 1 1.9734 

Iteration 11600

RMSE 0.0025 



In spite of the generation of random numbers that were var-
ied between 0-100 (according to the first condition that was
noted in 2.3.2), the approach used for meeting the second
condition caused the range of input variables to be changed
in 0-70%.

In order to specify what statistical distribution each of
the randomly generated variable follows, distribution-fit-
ting approach was applied. Because statistical distribution
of variable(s) should be known, they are used for the
Monte Carlo Method [23]. The distribution fitting of the
variables was carried out by computing the Maximum
Likelihood test with maximum 100 iterations and accura-
cy of 10-4. For goodness of fit, the Kolmogrov-Smirnov
test was carried out. The results of the distribution fitting

of the input variables were summarized in Table 7. The
results indicted that all the input variables except human
population density were normally distributed at signifi-
cance level of p<0.05. Following from that, these data sets
were entered into the ANNs and MLR-based models that
were developed for prediction of TN concentration sepa-
rately. The output of each model was then computed. For
the output of ANNs and MLR-based models, the distribu-
tion fitting was carried out one more time in order to deter-
mine what statistical distribution the output of the models
follow. Moreover, another purpose for distribution fitting was
to specify the probability of an event such as Pr(output)< 0,
since only positive values make sense in relation to the
water quality variables in general and for TN in particular.
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Statistics Urban Forest Agriculture Grassland Water body
Human Population

Density

Mean 19.86 19.82 20.23 19.82 20.27 438.57

Standard Error 0.16 0.16 0.16 0.16 0.16 3.11

Median 19.80 19.82 20.18 19.83 20.18 441.00

Mode 0.00 0.00 0.00 0.00 0.00 404.00

Standard Deviation 11.32 11.52 11.61 11.53 11.63 219.79

Sample Variance 128.16 132.73 134.76 133.04 135.15 48305.84

Kurtosis -0.30 0.07 -0.20 0.15 -0.09 -1.21

Skewness 0.29 0.39 0.32 0.42 0.36 -0.01

Range 61.29 72.26 70.00 71.43 72.07 754.00

Minimum 0.00 0.00 0.00 0.00 0.00 63.00

Maximum 61.29 72.26 70.00 71.43 72.07 817.00

Count 5000 5000 5000 5000 5000 5000

Confidence Level (95.0%) 0.31 0.32 0.32 0.32 0.32 6.09

Table 6. Summary of the statistics of the data set that was used for sensitivity analysis of the ANN model.

Variable
Kolmogorov-Smirnov Test

Statistics Statistical Distribution

Input: Urban 0.0395 Normal

Forest 0.0425 Normal

Agriculture 0.0405 Normal

Grassland 0.0426 Normal

Water body 0.0404 Normal

Human Population Density 0.0510 General Extreme Value

ANNs Model Output: TN 0.1051 Weibull (3P)

MLR Model Output: TN 0.0254 General Extreme Value

Table 7. Results of the distribution fitting of the input variables that were generated for sensitivity analysis, and that of outputs of the
developed models.

*Critical value is 0.0192 for P<0.05.



For determination of the probability of Pr(output)< 0, the
estimated cumulative distribution curve was plotted for the
output of TN models that were developed. The results of
the distribution fitting of the output of ANNs and MLR-
based models were summarized in Table 7 and illustrated
in Fig. 5a.

For the MLR-based TN model, results of the distribu-
tion fitting and Kolmogrov-Smirnov tests indicated that
output of the model followed general extreme value distri-
bution since the Kolmogrov-Smirnov measure (0.025) was
significant (p<0.05) (Fig. 5a and Table 7). Although statis-
tics of the model (Table 4) were high (r2=0.85, p<0.01), the
possibility of generation of negative outputs Pr(TN<0) by
the model is significantly high 90% (Fig. 5a) as well.
This feature of the developed model has decreased relia-
bility of this model  for prediction of TN concentration in
basins.

For the ANNs-based TN model, the results of distribu-
tion fitting revealed that output of the model has followed
Weibull (3P) distribution (Table 7 and Fig. 5b). The event
of Pr (0 <TN > 2) (mg/L) for the output of ANNs-based TN
model was not observed using a plot of the cumulative dis-
tribution curve (Fig. 5b). It would be implied that ANNs-
based TN model would not react properly to the TN con-
centration measures more than 2 mg/L in real situations.
Therefore, it might be suggested that the capability of pre-
diction of the developed ANNs model for TN would have a
variation between 0-2 mg/L. 

Conclusions

Using the ANNs modeling approach could develop the
model with a plausible measure of statistics (r2=0.94, p<0.01)
for TN comparing with that of MLR approach (r2=0.85,
p<0.01). Therefore, this model would be applied for predict-
ing TN concentration in stream water in the study area. 

This study has addressed the issue of the lack of access
to a sufficient data set to test the trained network by gener-
ating 5,000 random number data sets as hypothetical river
basins. Sensitivity of the output of the developed models
was then successfully analyzed using those randomly gen-
erated data sets based on the Monte Carlo Method. The
capability of the models that were developed in this study
for prediction of the TN concentration was investigated
using estimation of the cumulative distribution of the mod-
els’ output. 

The difference between the maximum value for each
input variable (urban, agriculture, grassland, water body
and human population density) of the generated data set
with that of the real data set, which were used for training
the networks, were deliberately set high in order to pro-
vide  reliable information with evaluation of the behavior
of the developed models in response to the conditions that
are different from those on which they were based. This
initiative provided us with some possibilities to determine
upper and lower limits of the prediction capability of the
ANNs and MLR-based models that were developed in
this study. 

Sensitivity analysis could specify that relying on statis-
tics of a model could not provide sufficient information to
judge whether it can be applied for prediction of environ-
mental or ecological variables in other areas or river basins.
For our case, although statistics of the MLR-based model
were satisfactorily high, the result of sensitivity analysis
indicated that the application of this model would result in
implausible prediction of TN concentration in other river
basins. Therefore, sensitivity analysis of any developed
model should be carried out and considered as a final step
in modeling environmental or ecological variables in fur-
ther studies.

One of the most challenging tasks in applying data-
intensive method (ANNs-based modeling) was tackled by
using the Monte Carlo method-based sensitivity analysis.
This approach could show how to model when there is seri-
ous lack of data. The procedure that was applied to tackle
the lack of data would be useful when direct decisions are
needed for a problem and we do not have the luxury to wait
until data is gathered.

Acknowledgments

A postdoctoral fellowship from Hiroshima University
for one of the authors (B.J.A.) is gratefully acknowledged.
The authors would like to express their special thanks to Dr.
John Elwyn from Cardiff University, England, and Mr.
Rudiyanto from Mie University, Japan, for their help in car-
rying out our study.

Comparative Prediction of Stream Water... 159

Fig. 5. The cumulative distribution of the output of MLR-
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